نام و نام خانوادگی:سحر موسوی
عنوان پایان نامه: به کار گیری یادگیری ماشین تحت نظارت به منظور بهبود کیفیت سرویس در شبکه 5G
رشته تحصیلی:مهندسی کامیپوتر -شبکه‌های کامیپوتری
مقطع تحصیلی: کارشناسی ارشد ناپیوسته
استاد راهنما: دکتر احمد یوسفی
چکیده:

به پنجمین نسل از فناوری­های سلولی، ارتباطات همراه 5G گفته می شود. شبکه ­های 5G به طور گسترده با سه ویژگی منحصر به فرد مشخص می شوند: اتصال همه جانبه، تاخیر بسیار کم و انتقال داده­ها با سرعت فوق العاده بالا. چالش­های موجود در شبکه­ های 5G عبارتند از: اطمینان از عملکرد شبکه، کیفیت خدمات مورد نیاز از جمله خدمات، ارتباطات انواع ماشین، پهنای باند پیشرفته موبایل، ارتباطات با قابلیت اعتماد بالا با تاخیر کم.

زمینه ­های یادگیری ماشین در تکنولوژی­های ارتباطات قابل پیاده ­سازی هستند. در معماری مطرح شده در این پژوهش، یک مکانیسم اطمینان QOS مبتنی بر یادگیری نظارت شده برای شبکه ­های 5G ارائه شده است.

در این پژوهش ابتدا انواع درخت­های برای یادگیری سیستم مورد بررسی قرار گرفته است که نتیجه آن بدین صورت است که درخت c4.5 بهترین پاسخ را در مقایسه با بقیه­ ی درخت­ها دارد.

در بررسی­ داده­های شبکه­ های مختلف به این نتیجه رسیدیم که در شبکه ­های غیرپویا سرعت بسیار کمی دارد. برای حل این مشکل، درخت تصمیم را با الگوریتم ژنتیک ادغام نمودیم که منجر به تولید نتایج مطلوبی گردید.

روش پیشنهادی در پنج مرحله کار خود را انجام می­دهد:  1) داده ­های شبکه جمع آوری می­شوند. 2) این داده ­ها به کمک درخت تصمیم c4.5 بررسی شده و فیلدی که باید پیش بینی شوند، پیش بینی می­شوند. 3) داده­ های جمع آوری شده و داده­ هایی که قبلا در الگوریتم ژنتیک بررسی شده ­اند (در تعریف الگوریتم ژنتیک این داده­ ها والد­ها هستند) در کنار هم مجموعه داده­ هایی را تشکیل می­دهند که در این مرحله بررسی می­شوند. 4) داده ­های انتخاب شده در مرحله 3 به عنوان ورودی برای عملیات جهش وارد الگوریتم ژنتیک می­شوند. 5) در این مرحله از بین فرزندان تولید شده در مرحله 4، به صورت تصادفی مواردی انتخاب شده، وارد درخت c4.5 می­شوند و عملیات یادگیری این درخت انجام می­شود. 6) داده ­های وارد شده برای مرحله بعد نگهداری می­شوند (در مرحله 3 به عنوان والد استفاده می­شود).

نتایج بدست آمده از شبیه ­سازی انجام شده بیانگر این موضوع است که ادغام الگوریتم ژنتیک و درخت c4.5 باعث شده است که عملیات یادگیری با سرعت بیشتری انجام شود و به تبع آن پیش بینی با دقت بیشتری انجام شود. مقایسه روش پیشنهادی با CART، CHAID انجام شده است که نتایج بدست آمده از مقایسات انجام شده نشان داده است که روش پیشنهادی توانسته عملکرد بهتری را به نسبت دو روش CART، CHAID بدست بیاورد.

کلیدواژه:

شبکه­ های 5G، یادگیری ماشین، ناهنجاری­های QOS، الگوریتم ژنتیک، درخت تصمیم